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SUMMARY 
We use the correspondence between iterated integrals and a noncommuta- 
tive algebra to recast the given dynamical system from the time domain 
to the Laplace-Bore1 transform domain. Then, we show that the following 
algebraic criterion has to be satisfied for the onset of chaos: 

where is the generating power series of the trajectories, the symbol LI 
is the shuffle product (le mklange) of the noncommutative algebra, xo is 
a noncommutative variable, r is the correlation parameter. In the given 
equation, symbolic forms for both J and lI can be obtained by use of 
one of the currently available symbolic languages such as PLI, REDUCE, 
MACSYMA. Hence, the criterion is a computer-algebraic one. 

INTRODUCTION 
Chaotic regimes of nonlinear dynamical systems are becoming more and 
more important as we find new applications. When we are interested in 
designing the operation of a dynamical system so as to avoid its chaotic 
regimes, we must know in advance the ranges of parameters for which the 
system’s response will be chaotic. This explains the need for a criterion. 

A dynamical system will respond according to the values of the physical 
parameters in play. We can always specify a space of physical parameters 
over which the system operates and imagine traversing paths within such 
a space. On any segment of a path, the system’s dynamical response will 
be characterized by the long-term behavior of its trajectories in a phase 
space, and this characterization may change at critical points on the path. 
For example, over a certain segment of parameter space, the system’s re- 
sponse may become steady after a long time has elapsed. Corresponding 
trajectories in a phase space are attracted to a fixed point; accordingly, we 
call it a fixed-point attractor. On the other hand, over another segment of 
parameter space, the system’s long-term behavior may be periodic in time; 
corresponding trajectories in a phase space will approach a closed curve or 
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limit cycle. Since this curve is defined by one dimension, its length, we 
call it a one-dimensional attractor. Over yet another segment of parameter 
space, the system’s long-term response in time may contain two incommen- 
surate periods. Corresponding trajectories in phase space will be attracted 
to a two-dimensional figure, a torus; we call it a two-torus. Finally, one or 
more segments of parameter space may exist where the system’s long-term 
response appears to be random or chaotic. Corresponding trajectories in 
phase space will be attracted to a limiting set, the dimension of which is 
noninteger. We call this attracting set a strange attractor. To avoid chaotic 
regimes of the system, we must know the ranges of parameters over which 
the system’s response is characterizable by a strange attractor. 

We seek the necessary and sufficient conditions for the existence of a 
point in parameter space defining the onset of a chaotic regime in a given 
dynamical system. A t  the moment, we have two leads suggesting how we 
might arrive at such a criterion. First, if we knew how to tell when the 
sign of the largest Lyapunov coefficient became positive, we would have a 
criterion in our hands. At  present, however, we do not know how to do 
this without computing the coefficients. The trouble here is that we must 
repeat the computation for each possible set of physical parameters, and we 
may never exhaust the possibilities. Numerical computations of this nature, 
therefore, are not suitable for developing a criterion which must be capable 
of picking out the relevant set of parameter values from the infinity of 
possible combinations. The second lead suggests itself from the observation 
that, in phase space, the trajectories will have zero autocorrelation at  the 
onset of chaos. Here, rather than carry out numerical computations it is 
possible to derive an analytical expression for the autocorrelation function 
at the onset of chaos, and seek a criterion for the onset from the expression 
itself. To this end, it is convenient to transform from the time domain to 
the Laplace-Bore1 ( L B )  transform domain. 

Laplace-Bore1 transforms lend themselves to  the treatment of iterated 
integrals. The connection between iterated integrals and nonlinear dynami- 
cal systems can be brought to light by giving the example of-let us say-the 
Duffing equation. We can integrate this equation twice and express the 
same amount of dynamics in the form of (twice-) repeated integrals. Re- 
peated integrals have been studied extensively by Chen in references 1, 2, 
and 3. There exists a formal correspondence between the repeated integrals 
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and a noncommutative algebra, as explained by Fliess and his colleagues in 
references 4 and 5 .  We shall use this correspondence to recast the dynam- 
ical system from its repeated-integral form to an algebraic form in the LB 
transform domain. The resulting set of algebraic equations can be solved, 
in principle, precisely for the physical parameters existant at the onset of 
a chaotic regime. 

This paper contains a derivation of the criterion along with a brief 
summary of the necessary mathematical background. Subsequent work 
should explore applications of the criterion to widely known dynamical 
systems as well as the novel flight dynamical system that we have discussed 
in references 6 through 9. 

This work was done under the NASA Ames Research Center/University 
of Santa Clara consortium, NCA2-48. 

BACKGROUND 
The following sections contain a brief summary on the use of iterated in- 
tegrals, a noncommutative algebra, and L B transforms. More complete 
information can be found in references 1 through 5 .  

Iterated Integrals 
Adopting the notation introduced by Chen (refs. 1, 2, and 31, we define 

an iterated integral as follows: 
t I’ dejf i  * .  . d t j o  = J 0 d t j f i ( T )  J r  0 d t j f i - 1 .  . d t j ,  

l d t j  = t j ( t )  - t j ( 0 )  

(1 )  

(2) 

and 

where j = 0,1,. . . ,n .and 0 5 t 5 T and eo, tl,. . . , tn : [O,T] - R are 
(n+ 1) continuous functions with bounded variations. We can associate the 
forcing terms of the dynamical system with iterated integrals as follows: Let 
u j ;  ul, u 2 , .  . . u, : [O, TI - R; then a forcing term u, can be represented by 

3 



where 

and i = 1,.  . . , n. 

A Noncommutative Algebra 

We shall define a noncommutative algebra and its correspondence with the 
iterated integrals. Let X = {xo,. . . , z,} be a finite set called an alphabet 
and let X = {wo,. . . , wn} be a free monoid, another set, generated by X .  
If w, is an element of X (w, E X), then w, is a word. The word w, consists 
of a finite sequence x , ~  . . . x , ~  of letters of an alphabet. 

The product of two words will be defined as a concatenation or juxtapo- 
sition of these two words. Concatenation is a noncommutative operation. 

The neutral element, which can be interpreted as an empty word, will 
be denoted by 1.  

The length of a word, say w,, will be denoted by / w, 1, w, E 2, and it will 
be defined by the number of its letters. For example the word ~ 0 5 1 ~ 1 ~ 1 ~ 0  

will have a length of 5 ;  i.e., I z o s ~ z ~  /= 5 . The length of the neutral element 
is 1 1 /= 0. 

The product in this algebra is called the shuffle product (le mblange). 
We denote it by LI and define it by induction on the length of words as: 

X L I  1 = 1 LI x = x vx E x (7) 

(8) 

(9) 

(zw) LI (5'w') = 5[w LI (z'w')] + z ' [ (zw) LI w'] 

Vx,z' E X and Vw, w' E X 
We shall give an example of the shuffle product to familiarize the reader 

with this form. Let w1 = zozl be the first word and 202 = 51x0 the second 
word. Let us determine w1 LI 202 (read w1 shuffled into w:! ) : 

4 



The first term of the right-hand side generates the following terms: 

The second term of equation (11) generates the following terms: 

Similarly, the second term of the right-hand side in equation (10) will give 
the following expression : 

which finally yields 

Next, we add like terms on the right hand side to obtain : 

Further regrouping yields : 

Finally we obtain for the right-hand side of equation (10): 

2xox:xo + 50215021 + 51x0~150 + 2515~x1 (17) 

The reader should not be alarmed by the tediousness of this operation since 
a computer programmed for a symbolic language can carry out the shuffle 
product for us. 

Next we shall define the real algebra of formal polynomials and the real 
algebra of power series with real coefficients and noncommutative variables, 
x3 E X .  Let %(z) be the %-algebra of a formal polynomial and 8 << x >> be 
the %-algebra of a power series with real coefficients and noncommutative 
variables. Let E ?I2 << 5 >> be an element of % << z >>, which can be 
written as 

G = C { [ ( S , 4 l W  I w E x> (18) 
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where ( 5 , w )  E 92. We define the following three operations ( addition, 
Cauchy multiplication and shuffle product ) on two elements of R7 namely, 

Let us give an interpretation of the meaning of a noncommutative power 
series jj which is an element of R << z >>. This noncommutative power 
series actually defines a causal (nonanticipative) functional of the forcing 
functions u, of the dynamical system if we replace the word x3,, . . . x30 by 
the corresponding iterated integral Ji df,, . . . dc30. Let y(t; u l , .  . . , u,) be a 
causal functional. We can write this causal functional as 

Such a causal functional is said to be analytic with generating power series 
lj. Equation (22) should be considered as a representation of a causal func- 
tional in terms of a noncommutative generating power series and iterated 
integrals. 

Let us consider an example to better understand what all this means. 
Let u1 represent the forcing function of a dynamical system. Let u1 be 
given as 

u1 = t" (23) 

Then we shall have (eqs. 3-5) 
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Now let us consider the following integral instead 

These two repeated integrals are different if and only if (iff) Q # 0 in the 
same way that the corresponding series ~ 0 x 1  # ~ 1 x 0 .  This is what we mean 
by noncommutativity. 

We shall give some fundamental theorems and remarks from references 
4 and 5 and urge the reader to consult the references for the details of the 
proofs: 

1. A causal functional is said to be analytic if it is defined by a noncom- 
mutative formal power series called the generating power series. 

2. The notion of an analytic causal functional generalizes in some sense 
the notion of an analytic function. We can represent an analytic 
function by its Taylor-series expansion and in a similar fashion we 
can represent an analytic functional by its generating power series. 

3. The product of two analytic causal functionals is a funct,ional of the 
same kind, the generating power series of which is the shuKie product 
of the two generating power series. 

Laplace-Bore1 Transforms 

In this section we shall define the f B transformation. Let us consider an 
analytic function h ( t ) :  

(30) 

We also have 
tn 72 

n! = 
dr,, /," dr,.,-l . . .l drl 
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Hence, we can rewrite h(t)  as 

h(t)  = h, I t  dr, IT''-' 0 . . . /," d71 
0 n > O  

Let us define the generating power series of noncommutatlqe variable xo as 

G = hnx: 
n20 

We say that the L B  transformation of h( t )  is $ and we write 

f B(h(t))  G = 1 h,z: 
n > O  

(33) 

(34) 

We have introduced a number of new concepts (new even to some math- 
ematicians). An example may help to fix and identify them. Let us consider 
the Duffing equation: 

The nonlinearity is a cubic polynomial, so that the equation is sometimes 
referred to as a cubic harmonic oscillator. To obtain the repeated integral 
form, we integrate twice : 

1.  Integrate from 0 to t 

and rearrange the terms to 

2. Integrate again 
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t 

I -  
I .  

3. Use the correspondence between the iterated integrals and noncom- 
mutative variables to obtain 

where 
a y(O) 

b y(0) 

are the initial conditions. We can rewrite this as 

The important point is that in the LCB transform domain, the given non- 
linear dynamical system is now represented as an algebraic equation. This 
algebraic equation can be solved, for example, by iteration. We consider it 
very important to acknowledge that, indeed, we are able to reduce a given 
nonlinear differential equation to an algebraic equation in much the same 
way that we use ordinary integral transforms (Laplace or Fourier) to reduce 
a given linear differential equation to an algebraic equation. An iterative 
scheme to solve equation (43) can be formulated as follows: Let us try a 
solution of the form 

5 = $0 + P51 + P2$2 + - - - (44) 

Substitution into the original equation yields 

b + (aa + b)zo + ~ 0 x 1  
$0 = 

1 + azo + x; (45) 

We can rewrite g2 as 
a.2 
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n 

Lo 

$3 = - 1 + azo + 2; 

-2 
Let us introduce 

A0 
S(z0) = - 

1 + ax0  + x; 
Then we have 

a a + b  b 
Go = -S(zo)(S + - XO + -3) 5 0  

5 0  

$3 = S ~ ~ O ~ ~ $ O ~ $ 2 ~ $ " ~ $ 1 ~ G O ~ $ O + $ 2 ~ $ O ~ G O + $ O ~ $ 1 ~ ~ 1  + G d G O W d  
(54) 

We cannot ignore the connection between these iterations and Feynman 
diagrams, which enable one to figure out the next iteration if one does not 
want to use a computer. We repeat that a computer can be programmed 
to carry out such iterations for us up to whatever order we request. 

To return to the time domain we must: (a) decompose into partial 
fractions and (b) use the following lemma obtained in reference 1. 

Lemma: The rational fraction (l-uxo)-P corresponds to the exponential 
polynomial 

A List of CB Transforms 
We give a partial list of L'B transforms: 

f B ( u n i t s t e p )  = 1 

1 
1 - ax0 

L B ( e " ' )  = 
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I .  

1 
(1 - ax0)2 f B(e"(1  + a t ) )  = 

. .  

a2t2 
2 

L B [ e a f ( l  + at + -)] = (1  - 

eat ]  = (1  - U ~ X O ) - ~  
2 2 .  i=o 

iwxo f B (sinzut) = 
1 + wzx; 

1 L B (coswt) = 
1 + w2x; 

WXO LB(sinhwt) = 
1 - w2x; 

1 f B(coshwt) = 
1 - w2x; 

I -  CHAOTIC REGIMES OF NONLINEAR 
DYNAMICAL SYSTEMS 

Chaotic regimes correspond to strange attractors. Strange attractors are 
limiting sets with noninteger dimension in the phase space of the trajec- 
tories of the dynamical system. Numerically speaking, given the physical 
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parameters we can compute: (a) the power spectrum; (b) the Lyapunov co- 
efficients; or (c) the dimension of the attractor to check whether the regime 
is chaotic or not. For the random-like response which is characteristic of the 
so-called chaotic regime, the computation (a) would result in a broad band, 
(b) would result in a positive Lyapunov coefficient, and (c) would result in 
a noninteger dimension. A fourth check would be (d) the autocorrelation 
function A C ( 7 ) .  The autocorrelation function A C ( 7 )  vanishes in the limit 
as 7 - 30 for chaotic regimes. Trajectories in the phase space that start 
out infinitesimally close ultimately diverge exponentially, and hence fail to 
correlate at large times. More precisely, the autocorrelation is a measure 
of the similarity of a trajectory at a given time t with its value at a later 
time t + 7.  We define A C ( r )  as the arithmetic mean of a large number of 
products such as Z(t).x(t + 7 ) ;  i.e., 

In a more compact way we can write 

AC(7)  = ( z ( t ) . x ( t  

We call AC(7)  a temporal autocorrelation function. By varying the inter- 
val 7, we can construct A C ( r ) .  It defines the degree of similarity of the 
trajectory Z(t)  with itself as time evolves. 

The Wiener-Kintchine theorem states that AC(7)  is the Fourier trans- 
form of the power spectrum. As a result of this we see that for the regimes 
represented by an  attractor which is: (a) a fixed point; (b) a limit cycle; 
and (c) an n-torus we have 

lim A C ( 7 )  # 0 
7-03 

since in these three cases the power spectrum is formed of distinct rays. 
In other words, periodic or quasiperiodic trajectories keep their internal 
similarity with the evolution of time. This means that the behavior of the 
system is predictable. In contrast, for a chaotic regime, where the power 
spectrum has a broad band (fig. 1) 

lim A C ( 7 )  = 0 
7-00 

(59) 
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As figure 1 illustrates, the temporal similarity of the trajectory with 
itself tends towards zero at  sufficiently large times. It follows that know- 
ing z ( t )  for a long lapse of time (as long as one wishes) does not allow 
the prediction of the future of z(t) .  We can say that the chaotic regime is 
unpredictable because of the progressive loss of internal similarity of tra- 
jectories. We observe a loss of memory in terms of initial conditions ( I C )  
with attractors of the fixed point, limit cycle, and n-tori types since for 
each of these types, trajectories originating from diverse initial conditions 
outside the attractor converge on the attractor. For example, any initial 
condition will result in the same constant steady motion if the attractor is 
a fixed point. In chaotic regimes, we have just the opposite: almost the 
same initial conditions result in different final states. Figure 2 depicts the 
phase space in which two trajectories that  are initially close diverge from 
each other and hence lose their similarity in a finite time. 

We shall give the following definition of chaos and its connection with 
the property called sensitivity to initial conditions (SIC) : 

1. Definition: If a regime is represented by an attractor such that in- 
finitesimally close neighboring trajectories diverge exponentially, such 
a regime is characterized as chaotic. The sensitivity to initial condi- 
tions implies an exponential amplification of errors or uncertainties 
in the IC and it characterizes the regime as chaotic. 

To summarize, the existence of a chaotic regime of a dissipative nonlinear 
dynamical syst,em is characterized by any one of t'he following condit'ions: 
(a) an attractor with a noninteger dimension; (b) a sensitivity to initial 
conditions; (c) a broad-band spectrum; and (d) a vanishing autocorrelation 
function. 

We shall make use of the last condition for our criterion. We have 
observed that the f B transformation will enable us to have a semianalytic 
criterion. The following basic properties of f B transforms are needed in 
the formulation of the criterion: 

Shifting Theorem: The f B  transformation of a function whose argu- 
ment is shifted by an amount 7 is related to its L B  transform as follows; 
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Proof Let us write the Taylor-series expansion for this function; 

Since we started with a function for which there exists an L B  transforma- 
tion, we can write 

+n 

f ( t )  = c a n ;  (62) 
n > O  

or, there is a corresponding generating power series 
tive variable so; 

of the noncommuta- 

n > O  

This $ by definition is the f B transformation of the original function, f ( t ) .  
The L B  transformation of the derivative of f ( t )  follows immediately as; 

Hence its generating power series will be 

anx:-' 
n > O  

or 

or we write 
1 

50 
f B [ f ' ( t ) ]  = -f B / f ( t ) ]  

Now we can write down the f B transformation of 
n 
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LB 

or we write 

(73) 

which completes the proof of the shifting theorem. 
Next we show a limiting property under the name of the limiting theo- 

rem. 
Limiting Theorem: The temporal limit as t - 00 corresponds to the 

limit of the noncommutative variable of the f B transformation as xo --+ 

Proof: The proof follows from the definition of the f B transform. If we 
00. 

have an analytic function 
rn 

then its f B transform is given by 

Therefore, if t --+ 00 then in the transform domain xo 00. With the 
help of these theorems we are ready to present the main theorem of this 
paper, which represents the criterion for the onset of chaos. 

Main Theorem: The following algebraic criterion has to be satisfied for 
the onset of chaos: 

where is the generating power series for the trajectories of the nonlinear 
dynamical system. In other words, 5 is the f B  transformation of the 
trajectories of the given nonlinear dynamical system. 
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Proof We adopt as definition of the autocorrelation 

As we discussed previously, we must have 

lim AC(7)  = 0 
7-00 

for the onset of chaos. 
Let us take the f B  transformation of both sides, 

function 

(78) 

fB[AC( . r ) ]  = 20-00 lim s o f B  jz( t ) ]  LI f B [z ( t  + 7)] (79) 

Notice that we have used a result in reference 1 to take the f B transforma- 
tion of a product of two functions. The f B  transformation of the product 
is equal to the shuffle product of the individual transformations. Let us 
denote L B  [ z ( t ) ]  by 5. Then by the shifting theorem we have 

Hence the criterion for the onset of chaos becomes 

/ -k 1 

which completes the proof of the main theorem. 

CONCLUDING REMARKS 
The criterion obtained as a main theorem is a computer-algebraic one. 

It is noteworthy that the algebra required in obtaining the two generating 
power series and their shuffle product, together with the two limits, all can 
be done on a computer with a symbolic language. At the moment we have 
the option of using any of the following symbolic languages, PLI, REDUCE, 
MACSYMA, or LISP. 
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Although the criterion is simple in concept, its application by no means 
will be a trivial affair. A considerable effort doubtless will be necessary to 
handle the difficulty of bifurcation points. These are points in parameter 
space where analyticity will be lost, and hence where the generalized series 
expansions will not be valid. Such points will reveal themselves beforehand 
by slowing down the rate of convergence of the iterations. We anticipate 
the necessity of considering slow convergence as a signal to change the set 
of parameters so as to skip over a bifurcation point. Since we are not 
interested in the identification of such a point, it should not be necessary 
to  come too close to it. We assume that there will be a finite and a small 
number of bifurcation points which it should be possible to skip successively 
if necessary, bringing us ultimately to a parameter regime that borders on 
the object of our search. This is one of the difficulties we can foresee. There 
may well be others. 

Our criterion, which is computer-algebraic, can be used to characterize 
the ranges of the physical parameters for which chaotic regimes will take 
place. Hence, it can be used in designing the operation of a nonlinear 
dynamical system to  avoid such regimes. In other words, we can control 
chaos in our nonlinear dynamical system by staying outside of the ranges 
defined by our criterion. 
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Figure 1.- Power spectrum and temporal autocorrelation. 
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Figure 2.- Two initially close trajectories. 
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